What three numbers have an average of 952?
Part 1: Understanding the Problem
We're looking for three numbers whose average is 952. This means if we add these three numbers together and divide by 3, we should get 952.
Step-by-step Solution:
- Recall the average formula: Average = (Sum of numbers) / (Count of numbers)
- In this case: 952 = (x + y + z) / 3
- To find the sum, multiply both sides by 3: 952 * 3 = x + y + z
- So, the sum of our three numbers should be: 2856
Part 2: Finding Solutions
Now, let's find multiple sets of three numbers that add up to 2856.
Solution 1:
952, 952, 952
Verification:
(952 + 952 + 952) / 3 = 2856 / 3 ≈ 952
This solution is correct!
Solution 2:
952, 952, 952
Verification:
(952 + 952 + 952) / 3 = 2856 / 3 ≈ 952
This solution is correct!
Solution 3:
1735, 689, 432
Verification:
(1735 + 689 + 432) / 3 = 2856 / 3 ≈ 952
This solution is correct!
Solution 4:
50, 2417, 389
Verification:
(50 + 2417 + 389) / 3 = 2856 / 3 ≈ 952
This solution is correct!
Solution 5:
1812, 355, 689
Verification:
(1812 + 355 + 689) / 3 = 2856 / 3 ≈ 952
This solution is correct!
Explanation:
As you can see, there are many possible solutions. We can find more by:
- Choosing any two numbers
- Subtracting their sum from 2856 to get the third number
Remember:
- The numbers don't have to be whole numbers.
- They can even be negative (although that might not make sense in some real-world contexts).
- The order of the numbers doesn't matter for the average.